(本小题满分12分)在一个盒子中,放有大小相同的红、白、黄三个小球,现从中任意摸出一球,若是红球记1分,白球记2分,黄球记3分.现从这个盒子中,有放回地先后摸出两球,所得分数分别记为、,设为坐标原点,点的坐标为,记.(1)求随机变量的最大值,并求事件“取得最大值”的概率;(2)求随机变量的分布列和数学期望.
已知函数(,,)的图像与轴的交点为,它在轴右侧的第一个最高点和第一个最低点的坐标分别为和 (1)求函数的解析式; (2)若锐角满足,求的值.
已知函数,其中是常数且. (1)当时,在区间上单调递增,求的取值范围; (2)当时,讨论的单调性; (3)设是正整数,证明:.
已知椭圆的右焦点为 ,为椭圆的上顶点,为坐标原点,且两焦点和短轴的两端构成边长为的正方形. (1)求椭圆的标准方程; (2)是否存在直线交与椭圆于, ,且使,使得为的垂心,若存在,求出点的坐标,若不存在,请说明理由.
设数列的前项和为,且满足. (1)求数列的通项公式; (2)在数列的每两项之间按照如下规则插入一些数后,构成新数列:与两项之间插入个数,使这个数构成等差数列,其公差为,求数列的前项和为.
如图,直三棱柱的侧棱长为3,,且,、分别是棱、上的动点,且 (1)证明:无论在何处,总有; (2)当三棱柱.的体积取得最大值时,求异面直线与所成角的余弦值.