,,为的三内角,其对边分别为,,,若.(Ⅰ)求;(Ⅱ)若,求的面积.
设函数(1)求函数的值域和函数的单调递增区间; (2)当,且时,求的值.
已知关于的函数,其导函数为.记函数 在区间上的最大值为.(1) 如果函数在处有极值,试确定的值;(2) 若,证明对任意的,都有;(3) 若对任意的恒成立,试求的最大值.
椭圆的离心率为,其左焦点到点的距离为.(1) 求椭圆的标准方程;(2) 若直线与椭圆相交于两点(不是左右顶点),且以为直径的圆过椭圆的右顶点,求证:直线过定点,并求出该定点的坐标.
已知数列中,,前项和.(1) 求数列的通项公式;(2) 设数列的前项和为,是否存在实数,使得对一切正整数都成立?若存在,求出的最小值;若不存在,请说明理由.
如图,在直三棱柱中,平面侧面,且(1) 求证:;(2) 若直线与平面所成的角为,求锐二面角的大小。