在极坐标系内,已知曲线的方程为,以极点为原点,极轴方向为正半轴方向,利用相同单位长度建立平面直角坐标系,曲线的参数方程为(为参数).(1)求曲线的直角坐标方程以及曲线的普通方程;(2)设点为曲线上的动点,过点作曲线的两条切线,求这两条切线所成角余弦值的取值范围.
已知以点C(t∈R,t≠0)为圆心的圆与x轴交于点O,A,与y轴交于点O,B,其中O为原点. (1)求证:△AOB的面积为定值; (2)设直线2x+y-4=0与圆C交于点M,N,若|OM|=|ON|,求圆C的方程; (3)在(2)的条件下,设P,Q分别是直线l:x+y+2=0和圆C上的动点,求|PB|+|PQ|的最小值及此时点P的坐标.
在平面直角坐标系xOy中,曲线y=x2-6x+1与坐标轴的交点都在圆C上. (1)求圆C的方程; (2)若圆C与直线x-y+a=0交于A,B两点,且OA⊥OB,求a的值.
已知点A(-3,0),B(3,0),动点P满足|PA|=2|PB|. (1)若点P的轨迹为曲线C,求此曲线的方程; (2)若点Q在直线l1:x+y+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,求|QM|的最小值.
如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点. (1)证明B1C1⊥CE; (2)求二面角B1-CE-C1的正弦值; (3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.
在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,且PA⊥平面ABCD. (1)求证:PC⊥BD; (2)过直线BD且垂直于直线PC的平面交PC于点E,且三棱锥E-BCD的体积取到最大值. ①求此时四棱锥E-ABCD的高; ②求二面角A-DE-B的正弦值的大小.