在下列网格图中,每个小正方形的边长均为1个单位.在Rt△ABC中,∠C=90°,AC=3,BC=4.(1)试在图中做出△ABC以A为旋转中心,沿顺时针方向旋转90°后的图形△AB1C1;(2)若点B的坐标为(﹣3,5),试在图中画出直角坐标系,并标出A、C两点的坐标;(3)根据(2)的坐标系作出与△ABC关于原点对称的图形△A2B2C2,并标出B2、C2两点的坐标.
如图,在Rt△ABC中,∠C=90°. (1)根据要求用尺规作图:过点C作斜边AB边上的高CD,垂足为D(不写作法,只保留作图痕迹); (2)在(1)的条件下,请写出图中所有与△ABC相似的三角形.
先化简,再求值:,其.
解不等式组.
(本小题满分12分)如图,在平面直角坐标系xOy中,抛物线()与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:与y轴负半轴交于点C,与抛物线的另一个交点为D,且CD=4AC. (1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示); (2)点E是直线l上方的抛物线上的动点,若△ACE的面积的最大值为,求a的值; (3)设P是抛物线的对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.
(本小题满分10分)已知AC,EC分别为四边形ABCD和EFCG的对角线,点E在△ABC内,∠CAE+∠CBE=90. (1)如图①,当四边形ABCD和EFCG均为正方形时,连接BF. i)求证:△CAE∽△CBF; ii)若BE=1,AE=2,求CE的长; (2)如图②,当四边形ABCD和EFCG均为矩形,且时,若BE=1,AE=2,CE=3,求k的值; (3)如图③,当四边形ABCD和EFCG均为菱形,且∠DAB=∠GEF=45°时,设BE=m,AE=n,CE=p,试探究m,n,p三者之间满足的等量关系.(直接写出结果,不必写出解答过程)