(本小题满分12分)已知抛物线,直线与抛物线交于两点.(Ⅰ)若轴与以为直径的圆相切,求该圆的方程;(Ⅱ)若直线与轴负半轴相交,求面积的最大值.
设函数 (1)若,①求的值;②的最小值。(参考数据)(2) 当上是单调函数,求的取值范围。
某工厂每天生产某种产品最多不超过40件,并且在生产过程中产品的正品率与每日生产产品件数()间的关系为,每生产一件正品盈利4000元,每出现一件次品亏损2000元.(注:正品率=产品的正品件数÷产品总件数×100%)(1)将日利润(元)表示成日产量(件)的函数;(2)求该厂的日产量为多少件时,日利润最大?并求出日利润的最大值.
设函数=(为自然对数的底数),,记.(1)为的导函数,判断函数的单调性,并加以证明;(2)若函数=0有两个零点,求实数的取值范围.
已知数列为递减的等差数列,是数列的前项和,且.⑴ 求数列的前项和⑵ 令,求数列的前项和
在中,角所对的边分别为,且满足, (1)求的面积; (2)若,求的值.