如图,⊙O是△ABC的外接圆,AB为直径,,CD⊥AB于D,且交⊙O于G,AF交CD于E.(1)求∠ACB的度数;(2)求证:AE=CE
为了完成“舌尖上的中国”的录制,节目组随机抽查了某省“ A .奶制品类, B .肉制品类, C .面制品类, D .豆制品类”四类特色美食若干种,将收集的数据整理并绘制成下面两幅尚不完整的统计图,请根据图中信息完成下列问题:
(1)这次抽查了四类特色美食共 种,扇形统计图中 a = ,扇形统计图中 A 部分圆心角的度数为 ;
(2)补全条形统计图;
(3)如果全省共有这四类特色美食120种,请你估计约有多少种属于“豆制品类”?
如图, ΔABC 在平面直角坐标系内,顶点的坐标分别为 A ( − 4 , 4 ) , B ( − 2 , 5 ) , C ( − 2 , 1 ) .
(1)平移 ΔABC ,使点 C 移到点 C 1 ( − 2 , − 4 ) ,画出平移后的△ A 1 B 1 C 1 ,并写出点 A 1 , B 1 的坐标;
(2)将 ΔABC 绕点 ( 0 , 3 ) 旋转 180 ° ,得到△ A 2 B 2 C 2 ,画出旋转后的△ A 2 B 2 C 2 ;
(3)求(2)中的点 C 旋转到点 C 2 时,点 C 经过的路径长(结果保留 π ) .
如图, ΔABC 中, AB = BC , BD ⊥ AC 于点 D , ∠ FAC = 1 2 ∠ ABC ,且 ∠ FAC 在 AC 下方.点 P , Q 分别是射线 BD ,射线 AF 上的动点,且点 P 不与点 B 重合,点 Q 不与点 A 重合,连接 CQ ,过点 P 作 PE ⊥ CQ 于点 E ,连接 DE .
(1)若 ∠ ABC = 60 ° , BP = AQ .
①如图1,当点 P 在线段 BD 上运动时,请直接写出线段 DE 和线段 AQ 的数量关系和位置关系;
②如图2,当点 P 运动到线段 BD 的延长线上时,试判断①中的结论是否成立,并说明理由;
(2)若 ∠ ABC = 2 α ≠ 60 ° ,请直接写出当线段 BP 和线段 AQ 满足什么数量关系时,能使(1)中①的结论仍然成立(用含 α 的三角函数表示).
俄罗斯世界杯足球赛期间,某商店销售一批足球纪念册,每本进价40元,规定销售单价不低于44元,且获利不高于 30 % .试销售期间发现,当销售单价定为44元时,每天可售出300本,销售单价每上涨1元,每天销售量减少10本,现商店决定提价销售.设每天销售量为 y 本,销售单价为 x 元.
(1)请直接写出 y 与 x 之间的函数关系式和自变量 x 的取值范围;
(2)当每本足球纪念册销售单价是多少元时,商店每天获利2400元?
(3)将足球纪念册销售单价定为多少元时,商店每天销售纪念册获得的利润 w 元最大?最大利润是多少元?
如图, Rt Δ ABC 中, ∠ ABC = 90 ° ,以 AB 为直径作 ⊙ O ,点 D 为 ⊙ O 上一点,且 CD = CB ,连接 DO 并延长交 CB 的延长线于点 E .
(1)判断直线 CD 与 ⊙ O 的位置关系,并说明理由;
(2)若 BE = 4 , DE = 8 ,求 AC 的长.