在元旦联欢会上,有一个开盒有奖的游戏,两只外观一样的盒子,一只装有奖品,一只是空的,游戏规定:每人每次游戏时主持人先混合盒子再拿出来,参加游戏的同学随机打开其中一只,若有奖品,就获得该奖品,若是空盒子,就表演一个节目.(1)两个人参加游戏,都获奖的概率为_______.(2)n个人参加游戏,全部获奖的概率为________.(3)现取三只外观一样的盒子,一只内有奖品,另两只空盒子,游戏规则不变.两个人参加游戏,用画树形图法求至少有一个人表演节目的概率.
如图,点、在数轴上,它们对应的数分别为,,且点、到原点的距离相等.求的值.
计算:.
如图,直线与轴,轴分别交于,两点,过,两点的抛物线与轴交于点.
(1)求抛物线的解析式;
(2)连接,若点是线段上的一个动点(不与,重合),过点作,交于点,当的面积是时,求点的坐标;
(3)在(2)的结论下,将绕点旋转得△,试判断点是否在抛物线上,并说明理由.
如图,是的直径,点是延长线上一点,过点作的切线,切点是,过点作弦于,连接,.
(1)求证:是的切线;
(2)若,,求的长;
(3)试探究线段,,之间的数量关系,并说明理由.
如图,在平面直角坐标系中,直线与轴交于点,与反比例函数在第二象限内的图象相交于点.
(1)求直线的解析式;
(2)将直线向下平移9个单位后与反比例函数的图象交于点和点,与轴交于点,求的面积;
(3)设直线的解析式为,根据图象直接写出不等式的解集.