在元旦联欢会上,有一个开盒有奖的游戏,两只外观一样的盒子,一只装有奖品,一只是空的,游戏规定:每人每次游戏时主持人先混合盒子再拿出来,参加游戏的同学随机打开其中一只,若有奖品,就获得该奖品,若是空盒子,就表演一个节目.(1)两个人参加游戏,都获奖的概率为_______.(2)n个人参加游戏,全部获奖的概率为________.(3)现取三只外观一样的盒子,一只内有奖品,另两只空盒子,游戏规则不变.两个人参加游戏,用画树形图法求至少有一个人表演节目的概率.
如图,某幼儿园为了加强安全管理,决定将园内的滑滑板的倾角由45º降为30º,已知原滑滑板AB的长为5米,点D、B、C在同一水平地面上. (1)改善后滑滑板会加长多少?(精确到0.01) (2)若滑滑板的正前方能有3米长的空地就能保证安全,原滑滑板的前方有6米长的空地,像这样改造是否可行?说明理由 (参考数据:)
(1)解方程:. (2)
(本小题满分12分)在△ABC中,AB=AC,P是BC上任意一点. (1)如图①,若P是BC边上任意一点,PF⊥AB于点F,PE⊥AC于点E,BD为△ABC的高线,试探求PE,PF与BD之间的数量关系; (2)如图②,若P是BC延长线上一点,PF⊥AB于点F,PE⊥AC于点E,CD为△ABC的高线,试探求PE,PF与CD之间的数量关系.
(本小题满分12分)如图1所示,已知在△ABC和△DEF中,AB=EF,∠B=∠E,EC=BD。 (1)试说明:△ABC≌△FED。 (2)若图形经过平移和旋转后得到图2,且有∠EDB=25º,∠A=66º,试求∠AMD的度数。 (3)将图形继续旋转后得到图3,此时D,B,F三点在同一条直线上,若DB=2DF,连接EB,已知△EFB的面积为5cm2,你能求出四边形ABED的面积吗?若能,请求出来;若不能,请你说明理由。
(本小题满分10分)如图,已知BD为△ABC的中线,CE⊥BD于E, AF⊥BD于F. 于是小白同学说:“BE+BF2BD ”.你认为他的判断对吗?为什么?