(本小题满分8分)已知,在△ABC中,∠BAC=90°,AB=AC,BC=,点D、E在BC边上(均不与点B、C重合,点D始终在点E左侧),且∠DAE=45°.(1)请在图①中找出两对相似但不全等的三角形,写在横线上 , ;(2)设BE=m,CD=n,求m与n的函数关系式,并写出自变量n的取值范围;(3)如图②,当BE=CD时,求DE的长;(4)求证:无论BE与CD是否相等,都有DE2=BD2+CE2.
(本题满分6分)已知(a-2)2+=0,求方程ax+=7的解.
(本题满分5分)写出二次函数y=-x2-4x-6的图象的顶点坐标和对称轴的位置,并求出它的最大值或最小值.
(本题满分5分)如图,已知在Rt△ABC中,∠C=90°,BC=1,AC=2,求tan A和sin B的值.
(本题满分5分)解方程:(x+1)(x-2)=x+1.
若矩形的一个短边与长边的比值为,(黄金分割数),我们把这样的矩形叫做黄金矩形(1) 操作:请你在如图15所示的黄金矩形ABCD(AB>AD)中,以短边AD为一边作正方形AEFD。(2) 探究:在(1)中的四边形EBCF是不是黄金矩形?若是,请予以证明;若不是,请说明理由。(3) 归纳:通过上述操作及探究,请概括出具体有一般性的结论(不需证明)