(本小题满分14分)已知是实数,函数,,若在区间上恒成立,则称和在区间上为“函数”.(1)设,若和在区间上为“函数”,求实数的取值范围;(2)设且,若和在以为端点的开区间上为“函数”,求 的最大值.
某公司承担了每天至少搬运280吨水泥的任务,已知该公司有6辆A型卡车和8辆B型卡车.又已知A型卡车每天每辆的运载量为30吨,成本费为0.9千元;B型卡车每天每辆的运载量为40吨,成本费为1千元.(1)如果你是公司的经理,为使公司所花的成本费最小,每天应派出A型卡车、B型卡车各多少辆?(2)在(1)的所求区域内,求目标函数的最大值和最小值.
在中,内角所对边长分别为,,。(1)求的最大值; (2)求函数的值域.
设函数.(1)在区间上画出函数的图象 ;(2)设集合. 试判断集合和之间的关系,并给出证明.
已知函数的最大值为0,其中。(1)求的值; (2)若对任意,有成立,求实数的最大值;(3)证明:
如图所示,已知以点 为圆心的圆与直线 相切,过点的动直线 与圆 相交于两点,是的中点,直线与相交于点 .(1)求圆的方程;(2)当时,求直线的方程;(3)是否为定值?如果是,求出其定值;如果不是,请说明理由.