化简:= ..
)在计算“1×2+2×3+…+n(n+1)”时,某同学学到了如下一种方法:先改写第k项:k(k+1)=[k(k+1)(k+2)-(k-1)k(k+1)],由此得1×2=(1×2×3-0×1×2),2×3=(2×3×4-1×2×3),…,n(n+1)=[n(n+1)(n+2)-(n-1)n(n+1)].相加,得1×2+2×3+…+n(n+1)=n(n+1)(n+2).类比上述方法,请你计算“1×2×3+2×3×4+…+n(n+1)(n+2)”,其结果为 .
将连续整数1,2,…,25填入如图所示的5行5列的表格中,使每一行的数从左到右都成递增数列,则第三列各数之和的最小值为 ,最大值为 .
下表给出一个“三角形数阵”.已知每一列数成等差数列,从第三行起,每一行数成等比数列,而且每一行的公比都相等,记第i行第j列的数为aij(i≥j,i,j∈N*),则a53等于 ,amn= (m≥3).,,,…
已知=2,=3,=4,…,若=7,(a,t均为正实数),则类比以上等式,可推测a、t的值,a+t= .
设P是边长为a的正△ABC内的一点,P点到三边的距离分别为h1、h2、h3,则h1+h2+h3=a;类比到空间,设P是棱长为a的空间正四面体ABCD内的一点,则P点到四个面的距离之和h1+h2+h3+h4= .