(本小题满分10分)选修4—1:几何证明选讲如图,已知△ABC的两条角平分线AD和CE相交于H,B,E,H,D四点共圆,F在AC上,且∠DEC=∠FEC.(Ⅰ)求∠B的度数;(Ⅱ)证明:AE=4F.
(本小题满分15分)已知数列,满足,,且对任意的正整数,和均成等差数列.(Ⅰ)求、的值;(Ⅱ)证明:和均成等比数列;(Ⅲ)是否存在唯一正整数,使得恒成立?证明你的结论.
(本小题满分15分)设椭圆C:(),,为左、右焦点,为短轴端点,且,离心率为,为坐标原点.(Ⅰ)求椭圆的方程;(Ⅱ)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆恒有两个交点、,且满足 ?若存在,求出该圆的方程,若不存在,说明理由.
(本小题满分15分)在等腰梯形中,,,为上的点,,将沿折起,使,,,,为的中点,在上,满足().(Ⅰ)求证;(Ⅱ)当为何值时,二面角余弦值为.
(本小题满分15分)已知函数,若的最大值为1.(Ⅰ)求的值,并求的单调增区间;(Ⅱ)在中,角、、所对的边是、、,若,且,试判断三角形的形状.
(本小题满分14分)设,是函数的两个极值点,且, 且.(Ⅰ) 当时,求的单调递减区间;(Ⅱ)求证:为定值;(Ⅲ)求的取值范围.