(本小题满分16分)已知数列满足.(1)求数列的通项公式;(2)对任意给定的,是否存在()使成等差数列?若存在,用分别表示和(只要写出一组);若不存在,请说明理由;(3)证明:存在无穷多个三边成等比数列且互不相似的三角形,其边长为.
在△中,角、、的对边分别为、、,且满足. (Ⅰ)求角的大小; (Ⅱ)若,求面积的最大值.
已知函数. (Ⅰ)若,求的单调区间; (Ⅱ)若,且存在实数满足,.设的最大值为,求的取值范围(用表示).
已知动圆过定点,且与直线相切. (1)求动圆的圆心的轨迹的方程; (2)若曲线上一点,是否存在直线与抛物线相交于两不同的点,使的垂心为.若存在,求直线的方程;若不存在,说明理由.
如图,弧是半径为的半圆,为直径,点为弧的中点,点和点为线段的三等分点,平面外一点满足,. (Ⅰ)证明:; (Ⅱ)已知点为线段上的点,且,求当最短时,直线和平面所成的角的正弦值.
在数列中,已知. (Ⅰ)求数列,的通项公式; (Ⅱ)设数列满足,前项和为,若对于所有的偶数均恒成立,求实数的取值范围.