(本小题满分15分)如图,摄影爱好者S在某公园A处,发现正前方B处有一立柱,测得立柱顶端O的仰角和立柱底部B的俯角均为设S的眼睛距地面的距离米.(1)求摄影者到立柱的水平距离和立柱的高度;(2)立柱的顶端有一长2米的彩杆MN绕其中点O在S与立柱所在的平面内旋转.摄影者有一视角范围为的镜头,在彩杆转动的任意时刻,摄影者是否都可以将彩杆全部摄入画面?说明理由.
设曲线C的方程是y=x3-x,将C沿x轴、y轴正向分别平移t、s单位长度后,得到曲线C1. (1)写出曲线C1的方程; (2)证明:曲线C与C1关于点A(,)对称.
已知点,求出下列情况,点分有向线段所成的比及点的坐标: ⑴点在上,且; ⑵点在的延长线上,; ⑶点在的延长线上,.
已知点A(-1,6)和B(3,0),在直线AB上求一点P,使||=||.
已知函数 (1)将函数化简成的形式,并指出的周期; (2)求函数上的最大值和最小值.
已知数列满足,我们知道当a取不同的值时,得到不同的数列,如当时,得到无穷数列:当时,得到有穷数列:. (Ⅰ)求当为何值时; (Ⅱ)设数列满足, ,求证:取数列中的任一个数,都可以得到一个有穷数列; (Ⅲ)若,求的取值范围.