(本小题满分13分)如图,圆的方程为,是圆内一个定点,且中点为原点 ,是圆上任意一点,线段的垂直平分线与半径相交于点. (Ⅰ)当点在圆上运动时,求证:点的轨迹为椭圆,并求轨迹的方程; (Ⅱ)在(Ⅰ)的条件下,过点的直线l交椭圆于A,B两点,交直线于点E,求证:为定值.
(本题13分)设,,函数,(1)设不等式的解集为C,当时,求实数取值范围;(2)若对任意,都有成立,求时,的值域;(3)设 ,求的最小值.
(本题12分)已知函数在处取得极值.(1) 求;(2 )设函数,如果在开区间上存在极小值,求实数的取值范围.
(本题12分)若关于x的函数在[1,2]上有零点,求m的范围
(本题12分)已知函数.(1)求证:不论为何实数 总是为增函数;(2)确定的值,使为奇函数; (3)在(2)条件下,解不等式:
某射手每次射击击中目标的概率是,且各次射击的结果互不影响.(1)假设这名射手射击5次,求恰有2次击中目标的概率;(2)假设这名射手射击5次,求有3次连续击中目标、另外2次未击中目标的概率;