(本题12分)已知函数.(1)求证:不论为何实数 总是为增函数;(2)确定的值,使为奇函数; (3)在(2)条件下,解不等式:
如图已知:菱形所在平面与直角梯形所在平面互相垂直,,点分别是线段的中点. (1)求证:平面平面;(2)点在直线上,且//平面,求平面与平面所成角的余弦值。
右表是一个由正数组成的数表,数表中各行依次成等差数列,各列依次成等比数列,且公比都相等,已知(1)求数列的通项公式;(2)设求数列的前项和。
已知向量,(1)当时,求函数的值域:(2)锐角中,分别为角的对边,若,求边.
南昌市为增强市民的交通安全意识,面向全市征召“小红帽”志愿者在部分交通路口协助交警维持交通,把符合条件的1000名志愿者按年龄分组:第1组、第2组、第3组、第4组、第5组,得到的频率分布直方图如图所示:(1)若从第3、4、5组中用分层抽样的方法抽取12名志愿者在五一节这天到广场协助交警维持交通,应从第3、4、5组各抽取多少名志愿者?(2)在(1)的条件下,南昌市决定在这12名志愿者中随机抽取3名志愿者到学校宣讲交通安全知识,若表示抽出的3名志愿者中第3组的人数,求的分布列和数学期望.
设(Ⅰ)求函数的定义域;(Ⅱ)若存在实数满足,试求实数的取值范围.