等腰Rt△ABC中,∠BAC=90°,点A、点B分别是x轴、y轴两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E;(1)如图(1),若A(0,1),B(2,0),求C点的坐标;(2)如图(2),当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE(3)如图(3),在等腰Rt△ABC不断运动的过程中,若满足BD始终是∠ABC的平分线,试探究:线段OA、OD、BD三者之间是否存在某一固定的数量关系,并说明理由.
如图,在Rt△ABC中,∠C=90°,∠ABC的平分线交AC于点D,点O是AB上一点,⊙O过B、D两点,且分别交AB、BC于点E、F. (1)求证:AC是⊙O的切线; (2)已知AB=10,BC=6,求⊙O的半径r.
已知:如图,在同心圆中,大圆的弦AB交小圆于C、D两点. (1)求证:∠AOC=∠BOD; (2)试确定AC与BD两线段之间的大小关系,并证明你的结论.
如图,小亮晚上在路灯下散步,已知灯杆OA=6.4m,他从灯杆底部的点O处沿直线前进9m到点D时,其影长DF=3m,当他继续前进到达点F时,其影子是变长还是变短?变化量为多少?
已知关于的一元二次方程有两个实数根和. (1)求实数的取值范围; (2)当时,求的值.
解下列方程(每小题3分,共9分) (1) (2) (3)