等腰Rt△ABC中,∠BAC=90°,点A、点B分别是x轴、y轴两个动点,直角边AC交x轴于点D,斜边BC交y轴于点E;(1)如图(1),若A(0,1),B(2,0),求C点的坐标;(2)如图(2),当等腰Rt△ABC运动到使点D恰为AC中点时,连接DE,求证:∠ADB=∠CDE(3)如图(3),在等腰Rt△ABC不断运动的过程中,若满足BD始终是∠ABC的平分线,试探究:线段OA、OD、BD三者之间是否存在某一固定的数量关系,并说明理由.
已知:如图,在平面直角坐标系中,是直角三角形,,点的坐标分别为,求过点的直线的函数表达式在轴上找一点,连接,使得与相似(不包括全等),并求点的坐标;在⑵的条件下,如分别是和上的动点,连接,设,问是否存在这样的使得与相似,如果存在,请求出的值;如果不存在,请说明理由.
南方地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某乡中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.求饮用水和蔬菜各有多少件?现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该乡中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?
如图,△ABC是等边三角形,点D、E分别在BC、AC上,BD=CE,AD与BE相交于点F.试说明:△ABD≌△BCE△AEF与△ABE相似吗?请说明理由.试说明:BD2=AD·DF
如图,两颗树的高度分别为AB=6m,CD=8m,两树的根部间的距离AC=4m,小强沿着 正对这两棵树的方向从左向右前进,如果小强的眼睛与地面的距离为1.6m,当小强与树AB的距离小于多少时,就不能看到树CD的树顶D?
如图,在四边形ABCD中,E是AD上一点,EC∥AB,EB∥DC,△ABE与△ECD相似吗?为什么?设△ABE的边BE上的高为h1,△ECD的边CD上的高为h2,△ABE的面积为4,△ECD的面积为1,求的值及△BCE的面积。