(本小题满分12分)已知一个袋子里有形状一样仅颜色不同的6个小球,其中白色球2个,黑色球4个,现从中随机取球,每次只取一球.(1)若每次取球后都放回袋中,求事件“连续取球四次,至少取得两次白球”的概率;(2)若每次取球后都不放回袋中,且规定取完所有白球或取球次数达到五次就终止游戏,记游戏结束时一共取球X次,求随机变量X的分布列与期望.
(本小题满分12分) 已知函数,其图象过点(,). (1)求的值及最小正周期; (2)将函数的图象上各点的横坐标缩短到原来的,纵坐标不变,得到函数的图象,求函数在[0, ]上的最大值和最小值.
(本小题满分10分) 已知等差数列满足:,.的前n项和为. (1)求及; (2)令bn=(nN*),求数列的前n项和
(本小题满分10分) 平面向量已知∥,,求、及夹角.
已知圆的圆心为N,一动圆与这两圆都外切。 (1)求动圆圆心的轨迹方程; (2)若过点N的直线L与(1)中所求轨迹有两交点A、B,求的取值范围
已知函数上是增函数. (I)求实数的取值范围;(6分) (II)设,求函数的最小值.