(本小题满分14分) 已知椭圆的中心在原点,焦点在轴上,离心率等于 ,它的一个顶点恰好是抛物线的焦点.(Ⅰ)求椭圆的方程;(Ⅱ)点,, ,在椭圆上,、是椭圆上位于直线两侧的动点.①若直线的斜率为,求四边形面积的最大值;②当、运动时,满足于,试问直线的斜率是否为定值?若是,请求出定值,若不是,请说明理由.
如图,菱形的边长为4,,.将菱形沿对角线折起,得到三棱锥,点是棱的中点,. (1)求证:平面; (2)求证:平面平面; (3)求三棱锥的体积.
为了对某课题进行研究,用分层抽样方法从三所科研单位A、B、C的相关人员中,抽取若干人组成研究小组,有关数据见下表(单位:人):
(1)确定与的值; (2)若从科研单位A、C抽取的人中选2人作专题发言,求这2人都来自科研单位A的概率.
已知函数,的最大值是1,最小正周期是,其图像经过点. (1)求的解析式; (2)设、、为△ABC的三个内角,且,,求的值.
已知函数. (1)是否存在点,使得函数的图像上任意一点P关于点M对称的点Q也在函数的图像上?若存在,求出点M的坐标;若不存在,请说明理由; (2)定义,其中,求; (3)在(2)的条件下,令,若不等式对且恒成立,求实数的取值范围.
已知椭圆的左、右焦点分别为、,P为椭圆上任意一点,且的最小值为. (1)求椭圆的方程; (2)动圆与椭圆相交于A、B、C、D四点,当为何值时,矩形ABCD的面积取得最大值?并求出其最大面积.