(本小题满分12分) 袋中有大小相同的红球和白球各1个,每次任取1个,有放回地摸三次.(Ⅰ)写出所有基本事件;(Ⅱ)求三次摸到的球恰有两次颜色相同的概率;(Ⅲ)求三次摸到的球至少有1个白球的概率.
已知函数,其中且.(1) 判断的奇偶性;(2) 判断在上的单调性,并加以证明.
设,解关于的不等式:
已知,,试用,表示.
已知点,直线:,为平面上的动点,过点作直线的垂线,垂足为,且.(1)求动点的轨迹的方程;(2)已知圆过定点,圆心在轨迹上运动,且圆与轴交于、两点,设,,求的最大值.
如图所示,已知圆定点A(1,0),M为圆上一动点,点P在AM上,点N在CM上,且满足,点N的轨迹为曲线E。 (1)求曲线E的方程; (2)若过定点F(0,2)的直线交曲线E于G、H不同的两点,求此直线斜率的取值范围。。