(本小题满分14分)已知函数.(Ⅰ)当时,求在区间上的最小值;(Ⅱ)讨论函数的单调性;(Ⅲ)当时,有恒成立,求的取值范围.
已知函数的图象过点(—1,—6),且函数的图象关于y轴对称。(1)求m、n的值及函数y=f(x)的单调区间;(2)若a>0,求函数y=f(x)在区间(a-1,a+1)内的极值.
如图,三棱锥P—ABC中,PC⊥平面ABC,PC=AC=2,AB=BC,D是PB上一点,且CD⊥平面PAB。(1)求证:AB平面PCB;(2)求二面角C—PA—B的大小.
已知数列时,总成等差数列。(1)求数列的通项公式; (2)若数列
设函数 (I)求函数的最小正周期及函数的单调递增区间;(II)若,是否存在实数m,使函数?若存在,请求出m的取值;若不存在,请说明理由。
设,,试比较a、b的大小。