已知圆的圆心在轴的正半轴上,半径为,圆被直线截得的弦长为.(1)求圆的方程;(2)设直线与圆相交于两点,求实数的取值范围;(3)在(2)的条件下,是否存在实数,使得关于过点的直线对称?若存在,求出实数的值;若不存在,请说明理由.
过双曲线的右焦点F作倾斜角为的直线交双曲线于A、B两点,求线段AB的中点C到焦点F的距离
已知函数图象上一点P(2,f(2))处的切线方程为.求的值;
分别求下面双曲线的标准方程 (1)与双曲线有共同的渐近线,并且经过点 (2)离心率为且过点(4,-)。
(本小题满分14分)已知(1)求函数的单调区间;(2)若关于的方程恰有一个实数解,求实数a的取值范围;(3)已知数列,若不等式时恒成立,求实数p的最小值。
(本小题满分13分)对于定义域为D的函数,若同时满足下列条件:①在D内单调递增或单调递减;②存在区间[],使在[]上的值域为[];那么把()叫闭函数(1)求闭函数符合条件②的区间[];(2)判断函数是否为闭函数?并说明理由;(3)若是闭函数,求实数的取值范围.