如图,△ABC的外接圆⊙O的半径为5,CE垂直于⊙O所在的平面,BD∥CE,CE=4,BC=6,且BD=1,.(1)求证:平面AEC⊥平面BCED;(2)试问线段DE上是否存在点M,使得直线AM与平面ACE所成角的正弦值为?若存在,确定点M的位置;若不存在,请说明理由.
设函数对任意,都有,当时, (1)求证:是奇函数; (2)试问:在时,是否有最大值?如果有,求出最大值,如果没有,说明理由. (3)解关于x的不等式
(1)求 (2).
已知函数的图象在与轴交点处的切线方程是. (I)求函数的解析式; (II)设函数,若的极值存在,求实数的取值范围以及函数取得极值时对应的自变量的值.
某市职教中心组织厨师技能大赛,大赛依次设基本功(初赛)、面点制作(复赛)、热菜烹制(决赛)三个轮次的比赛,已知某选手通过初赛、复赛、决赛的概率分别是,,且各轮次通过与否相互独立. (I)设该选手参赛的轮次为,求的分布列和数学期望; (Ⅱ)对于(I)中的,设“函数是偶函数”为事件D,求事件D发生的概率.
函数(A>0,>0)的最小值为-1,其图象相邻两个对称中心之间的距离为. (1)求函数的解析式 (2)设,则,求的值.