如图,在平面直角坐标系中,以轴为始边作两个锐角,它们的终边分别交单位圆于两点.已知两点的横坐标分别是,.(1)求的值;(2)求的值.
设是给定的正整数,有序数组同时满足下列条件: ① ,; ②对任意的,都有. (1)记为满足“对任意的,都有”的有序数组的个数,求; (2)记为满足“存在,使得”的有序数组的个数,求.
如图,正四棱柱中,设,,若棱上存在点满足平面,求实数的取值范围.
在极坐标系中,已知点,,求以为直径的圆的极坐标方程.
设矩阵,若矩阵的属于特征值1的一个特征向量为,属于特征值2的一个特征向量为,求实数的值.
(本小题满分16分)已知函数的图象在上连续不断,定义:, 其中,表示函数在区间上的最小值,表示函数在区间上的最大值.若存在最小正整数,使得对任意的成立,则称函数为区间上的“阶收缩函数”. (1)若,试写出的表达式; (2)已知函数试判断是否为上的“阶收缩函数”,如果是,求出相应的;如果不是,请说明理由; (3)已知函数是上的2阶收缩函数,求的取值范围.