已知递增的等比数列的前三项之积为512,且这三项分别减去1,3,9后又成等差数列,求数列的通项公式,并求数列的前n项和.
选修4-4:坐标系与参数方程 在平面直角坐标系中,以坐标原点为极点,轴的正半轴为极轴建立极坐标系.已知直线,曲线(是参数). 求直线的直角坐标方程与曲线的普通方程; 若点P在直线上,Q在曲线上,求的最小值.
已知.(1)求函数的单调区间; (2)若关于的方程有实数解,求实数的取值范围; (3)当时,求证:.
如图,四棱锥中,,四边形是边长为的正方形,若分别是线段的中点. (1)求证:∥底面; (2)若点为线段的中点,求三角形的面积.
已知函数.(1)当时,求的值域;(2)若△ABC的内角A,B,C的对边分别为,且满足,,求的值.
等差数列中,,(),是数列的前n项和. (1)求;(2)设数列满足(),求的前项和.