如图,是小亮晚上在广场散步的示意图,图中线段AB表示站立在广场上的小亮,线段PO表示直立在广场上的灯杆,点P表示照明灯的位置. (1)在小亮由B处沿BO所在的方向行走到达O处的过程中,他在地面上的影子长度的变化情况为 ; (2)请你在图中画出小亮站在AB处的影子; (3)当小亮离开灯杆的距离OB=4.2m时,身高(AB)为1.6m的小亮的影长为1.6m,问当小亮离开灯杆的距离OD=6m时,小亮的影长是多少m?
已知:,求代数式的值.
已知:如图,在△中,.⊥于点,且,⊥交的延长线于点.求证:.
解方程:
计算:.
已知:如图,矩形ABCD,AB = 4,∠ACB = 30°.点E从点C出发,沿折线CA—AD以每秒一个单位长度的速度运动,过点E作EF∥CD交BC于点F,同时过点E作EG⊥AC交直线BC于点G,设运动的时间为t,△EFG与△ABC重叠部分的面积为S,当点E运动到点D时停止运动. (1)当点B与点G重合时,求此时t的值; (2)直接写出S与t之间的函数关系式和相应的自变量取值范围; (3)当t = 4时,将△EFG绕点E顺时针旋转一个角度(),∠GEF的两边分别交矩形的边于点M,点N.当△MEN为等腰三角形时,求此时△MEN的面积.