如图,一次函数y=-2x+t的图象与x轴,y轴分别交于点C,D.(1)求点C,点D的坐标;(2)已知点P是二次函数y=-x2+3x图象在y轴右侧部分上的一个动点, 若以点C,点D为直角顶点的△PCD与△OCD相似。求t的值及对应的点P的坐标.
如图,二次函数y=x2+bx+c经过点(-1,0)和点(0,-3). (1)求二次函数的表达式; (2)如果一次函数y=4x+m的图象与二次函数的图象有且只有一个公共点,求m的值和该公共点的坐标; (3)将二次函数图象y轴左侧部分沿y轴翻折,翻折后得到的图象与原图象剩余部分组成一个新的图象,该图象记为G,如果直线y=4x+n与图象G有3个公共点,求n的值.
阅读下列材料: 已知:如图1,在Rt△ABC中,∠C=90°,AC=4,BC=3,P为AC边上的一动点,以PB,PA为边构造□APBQ,求对角线PQ的最小值及此时的值是多少. 在解决这个问题时,小明联想到在学习平行线间的距离时所了解的知识:端点分别在两条平行线上的所有线段中,垂直于平行线的线段最短.进而,小明构造出了如图2的辅助线,并求得PQ的最小值为3.参考小明的做法,解决以下问题: (1)继续完成阅读材料中的问题:当PQ的长度最小时,= ; (2)如图3,延长PA到点E,使AE=nPA(n为大于0的常数).以PE,PB为边作□PBQE,那么对角线PQ的最小值为 ,此时= ; (3)如图4,如果P为AB边上的一动点,延长PA到点E,使AE=nPA(n为大于0的常数),以PE,PC为边作□PCQE,那么对角线PQ的最小值为 ,此时= .
如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD. (1)求证:CD2=CA•CB; (2)求证:CD是⊙O的切线; (3)过点B作⊙O的切线交CD的延长线于点E,若BC=12,tan∠CDA=,求BE的长.
某市在2013年义务教育质量监测过程中,为了解学生的家庭教育情况,就八年级学生平时主要和谁在一起生活进行了抽样调查.下面是根据这次调查情况制作的不完整的频数分布表和扇形统计图. 频数分布表 代码和谁一起生活频数频率 A父母42000.7 B爷爷奶奶660a C外公外婆6000.1 D其它b0.09 合计60001 请根据上述信息,回答下列问题: (1)a= ,b= ; (2)在扇形统计图中,和外公外婆一起生活的学生所对应扇形圆心角的度数是 ; (3)若该市八年级学生共有3万人,估计不与父母一起生活的学生有 人.
如图,在四边形ABCD中,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,求AC的长.