(本小题满分7分)选修4-2:矩阵与变换在平面直角坐标系中,把矩阵确定的压缩变换与矩阵确定的旋转变换进行复合,得到复合变换.(Ⅰ)求复合变换的坐标变换公式;(Ⅱ)求圆C:x2+ y2 =1在复合变换的作用下所得曲线的方程.
如图,电路中共有7个电阻与一个电灯A,若灯A不亮,分析因电阻断路的可能性共有多少种情况。
已知随机变量的概率分布列为分别求出随机变量η=2的分布列.
某电视台的一个智力游戏节目中,有一道将四本由不同作者所著的外国名著A、B、C、D与它们的作者连线的题目,每本名著只能与一名作者连线,每名作者也只能与一本名著连线.每连对一个得3分,连错得分,一名观众随意连线,他的得分记作ξ.(1)求该观众得分ξ为非负的概率;(2)求ξ的分布列及数学期望.
甲、乙两人破译一种密码,它们能破译的概率分别为和,求:(1)恰有一人能破译的概率;(2)至多有一人破译的概率;(3)若要破译出的概率为不小于,至少需要多少甲这样的人?
甲、乙两人各射击一次,击中目标的概率分别是和。假设两人射击是否击中目标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响。(Ⅰ)求甲射击4次,至少1次未击中目标的概率;(Ⅱ)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率;(Ⅲ)假设两人连续两次未击中目标,则停止射击。问:乙恰好射击5次后,被中止射击的概率是多少?