已知抛物线y=ax2+bx+c经过A(﹣1,0)、B(3,0)、C(0,3)三点,直线x=l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线x=l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线x=l上是否存在点M,使△MAC为等腰三角形?若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.
已知x=+3, y=-3,求下列各式的值; (1)x2-2xy+y2 , (2)x2-y2;
已知a-=,求a+的值。
如图,点D,E在△ABC的边BC上,连 接AD,AE.①AB=AC;②AD=AE;③BD=CE.以此三个等式中的两个作为命题的题设,另一个作为命题的结论,构成三个命题:①②⇒③:①③⇒②;②③⇒①. (1)以上三个命题是真命题的为(直接作答); (2)请选择一个真命题进行证明(先写出所选命题,然后证明)
如图,在△ABC中,已知∠B=∠C (1)尺规作图:作底角∠ABC的平分线BD,交AC于点D(作图不写作法,但保留作图痕迹); (2)猜想:“若∠A=36°,则△ABD和△BDC都是等腰三角形”。请你通过计算说明猜想是否成立.
某质检部门抽取甲、乙两厂相同数量的产品进行质量检测,测得甲厂有合格品48件,乙厂有合格品45件,且甲厂的产品合格率比乙厂的产品合格率高5%,问甲厂产品的合格率是多少?