(本题6分)解方程①2(1-x)=-5x+8; ②
如图,在△ABC中,∠ACB=90°,∠B=60°,CD,CE分别是△ABC的高和角平分线,求∠DCE和∠AEC的度数.
解方程组: (1)(2)
如图,已知∠1=∠2, ∠3=∠4。试说明AC=AD成立的理由。 请同学们完成下列填空. 解:∵ ∠3=∠4( 已知 ) ∴ ∠ABC=∠ABD( ) 在△ABC和△ABD中,∠1=∠2(已知 ),(), ∠ABC=∠ABD, ∴△ABC≌△DEF(), ∴AC=AB().
如图,直线y=-2x+2与x轴、y轴分别交于A、B两点,将△OAB绕点O逆时针方向旋转90°后得到△OCD. (1)填空:点C的坐标是( ,),点D的坐标是( ,); (2)设直线CD与AB交于点M,求线段BM的长; (3)在y轴上是否存在点P,使得△BMP是等腰三角形?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由.
A1:;A2:;A3:; A4:=……An:: (1)请观察A1,A2,A3的规律,按照规律完成填空. (2)比较大小A1和A2 ∵ ∴ ∴ (3)同理,我们可以比较出以下代数式的大小:;;