(本小题满分10分)如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴于A.(1)求tan∠BOA的值;(2)在坐标系中作出将△AOB绕原点O逆时针方向旋转90°后的△COD(点A的对应点是C点,点B的对应点D点),并写出C点、D点的坐标;(3)将△OAB平移得到△O′A′B′,点A的对应点是A′,点B的对应点B′的坐标为(2,-2),在坐标系中作出△O′A′B′,并求出平移的距离.
如图,已知两点P、Q在锐角∠AOB内,分别在OA、OB上求点M、N,使PM+MN+NQ最短.
计算(4分+6分,共10分)(1) (2)
已知正方形ABCD和正方形AEFG有公共顶点A,将正方形AEFG绕点A旋转.(1)发现:当E点旋转到DA的延长线上时(如图1),△ABE与△ADG的面积 关系是: .(2)引申:当正方形AEFG旋转任意一个角度时(如图2),△ABE与△ADG的面积关系是:______________________.并证明你的结论.证明:(3)运用:已知△ABC,AB=5cm,BC=3cm,分别以AB、BC、CA为边向外作正方形(如图3),则图中阴影部分的面积和的最大值是 cm2.
如图①,在△ABC中,点P为BC边中点,直线a绕顶点A旋转,若点B、P在直线a的异侧,BM⊥直线a于点M,CN⊥直线a于点N,连接PM、PN.延长MP交CN于点E(如图②).(1)求证:△BPM≌△CPE;(2)求证:PM=PN.
小王剪了两张直角三角形纸片,进行了如下的操作:操作一:如图1,将Rt△ABC沿某条直线折叠,使斜边的两个端点A与B重合, 折痕为DE.(1)如果AC=6cm,BC=8cm,可求得△ACD的周长为 ; (2)如果∠CAD:∠BAD=4:7,可求得∠B的度数为 ; 操作二:如图2,小王拿出另一张Rt△ABC纸片,将直角边AC沿直线AD折叠, 使它落在斜边AB上,且与AE重合,若AC=9cm,BC=12cm,请求出CD的长.