(1)如图,已知∠AOB,请你利用图①,用尺规作出∠AOB的平分线0P,并画一对以OP所在直线为对称轴的全等三角形;(2)参考(1)中画全等三角形的方法,解答下列问题:如图②,在ABC中,∠ACB是直角,∠B =60°,AD、CE分别是∠BAC与∠BCA的平分 线,AD和CE相交于点F,请猜想FE与FD有怎样的数量关系,并加以说明.
(每小题3分,共9分)因式分解:(1)x3+2x2y+xy2 (2) (3)
如图,四边形ABCD为菱形,点E为对角线AC上的一个动点,连接DE并延长交射线AB于点F,连接BE.(1)求证:∠AFD=∠EBC ;(2)是否存在这样一个菱形,当DE=EC时,刚好BE⊥AF?若存在,求出∠DAB的度数,若不存在,请说明理由 ;(3)若∠DAB=90°,且当△BEF为等腰三角形时,求∠EFB的度数.
如图,在□ABCD中,AB≠BC,将△ABC沿AC翻折至△AB′C,连接B′C,B′D,B′C交AD于点E.(1)证明:B′D∥AC ; (2)若∠B=45°,AB=,BC=3,求△AEC的面积.
某汽车销售公司经销某品牌A款汽车,随着汽车的普及,其价格也在不断下降,今年4月份A款汽车的售价比去年同期每辆降价1万元,如果卖出相同数量的A款汽车,去年销售额为90万元,今年销售额只有80万元.(1)今年4月份A款汽车每辆售价为多少万元?(2)为了增加收入,汽车销售公司决定再经销同品牌的B款汽车,已知A款汽车每辆进价为6.5万元,B款汽车每辆进价为5万元,公司预计用不少于90万元且不多于96万元的资金购进这两款汽车共15辆,有几种进货方案?(3)如果B款汽车每辆售价为7万元,为打开B款汽车的销路,公司决定每售出一辆B款汽车,返还顾客现金a万元,要使(2)中所购进汽车全部售完,且所有方案获利相同,a的值应是多少?此时,哪种方案对公司更有利?
如图,△ABC中,D、E分别是AB、AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形; (2)若CE=8,∠BCF=120°,求菱形BCFE的面积.