(本小题满分12分)如图,底面是正三角形的直三棱柱中,D是BC的中点,. (1)求证:平面;(2)求点A1 到平面的距离.
(本小题满分10分)如图,在直三棱柱中,已知,,,点,分别在棱,上,且,,. (1)当时,求异面直线与所成角的大小;(2)当直线与平面所成角的正弦值为时,求的值.
在平面直角坐标系中,已知曲线的参数方程是(是参数),若以为极点,轴的正半轴为极轴,取与直角坐标系中相同的单位长度,建立极坐标系,求曲线的极坐标方程.
已知二阶矩阵A有特征值及对应的一个特征向量和特征值及对应的一个特征向量,试求矩阵A.
已知数列是等差数列,其前n项和为Sn,若,.(1)求;(2)若数列{Mn}满足条件: ,当时,-,其中数列单调递增,且,.①试找出一组,,使得;②证明:对于数列,一定存在数列,使得数列中的各数均为一个整数的平方.
如图,在平面直角坐标系中,已知椭圆:,设是椭圆上的任一点,从原点向圆:作两条切线,分别交椭圆于点,.(1)若直线,互相垂直,求圆的方程;(2)若直线,的斜率存在,并记为,,求证:;(3)试问是否为定值?若是,求出该值;若不是,说明理由.