(本小题满分13分)在△ABC中, 内角A, B, C所对的边分别是a, b, c. 已知, a =" 3," . (Ⅰ)求b的值; (Ⅱ)求的值.
(已知函数(x)=,a是正常数。(1)若f(x)= (x)+lnx,且a=,求函数f(x)的单调递增区间;(2)若g(x)=∣lnx∣+(x),且对任意的x,x∈(0,2〕,且x≠x,都有<-1,求a的取值范围
(在某次测验中,有6位同学的平均成绩为75分.用表示编号为的同学所得成绩,且前5位同学的成绩如下:
(1)求第6位同学成绩,及这6位同学成绩的标准差;(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间中的概率.
如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,点E在线段AD上,且CE∥AB。(1) 求证:CE⊥平面PAD;(11)若PA=AB=1,AD=3,CD=,∠CDA=45°,求四棱锥P-ABCD的体积
在△ABC中,内角A,B,C的对边分别为a,b,c.已知.(1)求的值;(2)若cosB=,△
已知数列的首项(1)证明:数列是等比数列;(2)若数列的前n项和为,试比较与的大小。