(本小题满分13分) 如图,轴,点M在DP的延长线上,且.当点P在圆上运动时。(1)求点M的轨迹C的方程;(2)过点的切线交曲线C于A,B两点,求△AOB面积S的最大值和相应的点T的坐标。
是否同时存在满足下列条件的双曲线,若存在,求出其方程,若不存在,说明理由.(1)焦点在轴上的双曲线渐近线方程为;(2)点到双曲线上动点的距离最小值为.
已知以点为圆心的圆与直线相切,过点的动直线与圆相交于两点.(1)求圆的方程;(2)当时,求直线的方程.
已知命题:方程有两个不相等的负实根,命题:恒成立;若或为真,且为假,求实数的取值范围.
在平面直角坐标系中,若,且.(1)求动点的轨迹的方程;(2)已知定点,若斜率为的直线过点并与轨迹交于不同的两点,且对于轨迹上任意一点,都存在,使得成立,试求出满足条件的实数的值.
如图,椭圆经过点,离心率,直线的方程为.(1)求椭圆的方程;(2)是经过右焦点的任一弦(不经过点),设直线与直线相交于点,记的斜率分别为.问:是否存在常数,使得?若存在,求的值;若不存在,说明理由.