(本小题满分12分)已知正方形的边长为2,分别是边的中点.(1)在正方形内部随机取一点,求满足的概率;(2)从这八个点中,随机选取两个点,记这两个点之间的距离的平方为,求随机变量的分布列与数学期望.
如图,直三棱柱中,已知,,是中点. (1)求证:平面; (2)当点在上什么位置时,会使得平面?并证明你的结论.
已知圆C的方程是,直线的方程为,求:当为何值时 (1)直线平分圆; (2)直线与圆相切; (3)直线与圆有两个公共点.
已知直角三角形的斜边长, 现以斜边为轴旋转一周,得旋转体. (1)当时,求此旋转体的体积; (2)当∠A=45°时,求旋转体表面积.
设. (1)在下列直角坐标系中画出的图像; (2)若,求值; (3)用单调性定义证明函数在时单调递增.
求过两直线和的交点, 且分别满足下列条件的直线的方程 (1)直线与直线平行; (2)直线与直线垂直.