正方形网格中每个小正方形的边长都是1,每个小正方形的顶点叫做格点,以格点为顶点.(1)在图①中,画一个面积为10的正方形;(2)在图②、③中,分别画两个不全等的直角三角形,使它们的三边长都是无理数.
(.北京市,第26题,5分)有这样一个问题:探究函数的图象与性质. 小东根据学习函数的经验,对函数的图象与性质进行了探究. 下面是小东的探究过程,请补充完整: (1)函数的自变量x的取值范围是____; (2)下表是y与x的几组对应值. 求m的值: (3)如下图,在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象: (4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是,结合函数的图象,写出该函数的其它性质(一条即可):_________.
(.河南省,第22题,10分)如图1,在Rt△ABC中,∠B=90°,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE. 将△EDC绕点C按顺时针方向旋转,记旋转角为α. (1)问题发现 ① 当时,;② 当时, (2)拓展探究 试判断:当0°≤α<360°时,的大小有无变化?请仅就图2的情况给出证明. (3)问题解决 当△EDC旋转至A、D、E三点共线时,直接写出线段BD的长.
(.河北省,第26题,14分) (本小题满分14分) 平面上,矩形ABCD与直径为QP的半圆K如图摆放,分别延长DA和QP交于点O,且∠BOQ=60°,OQ=OD=3,OP=2,OA=AB=1.让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向形如旋转,设旋转角为α(0°≤α≤60°). 发现(1)当α=0°,即初始位置时,点P____直线AB上.(填“在”或“不在”) 求当α是多少时,OQ经过点B? (2)在OQ旋转过程中.简要说明α是多少时,点P,A间的距离最小?并指出这个最小值: (3)如图,当点P恰好落在BC边上时.求α及S阴影. 拓展如图.当线段OQ与CB边交于点M,与BA边交于点N时,设BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围. 探究当半圆K与矩形ABCD的边相切时,求sin α的值.
(.北京市,第24题,5分 )如图,AB是⊙O的直径,过点B作⊙O的切线BM,弦CD//BM,交AB于点F,且,连接AC,AD,延长AD交BM于点E. (l)求证:△ACD是等边三角形; (2)连接OE,若DE=2,求OE的长.
(.天津市,第21题,10分)(本小题10分) 已知A, B,C是⊙O上的三个点,四边形OABC是平行四边形,过点C作⊙O的切线,交AB的延长线于点D. (Ⅰ)如图①,求∠ADC的大小; (Ⅱ)如图②,经过点O作CD的平行线,与AB交于点E,与交于点F,连接AF,求∠FAB的大小.