有一种可食用的野生菌,刚上市时,外商李经理以每千克30元的市场价格收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这种野生菌在冷库中最多保存140天,同时,平均每天有3千克的野生菌损坏导致不能出售.(1)若存放天后,将这批野生菌一次性出售,设这批野生菌的销售总额为元,试求出与之间的函数关系式;(2)李经理将这批野生菌存放多少天后一次性全部出售可以获得22500元的利润?
问题:在△ABC中,AB=AC,∠A=100°,BD为∠B 的平分线,探究AD、BD、BC之间的数量关系. 请你完成下列探究过程: (1)观察图形,猜想AD、BD、BC之间的数量关系为. (2)在对(1)中的猜想进行证明时,当推出∠ABC=∠C=40°后,可进一步推出∠ABD=∠DBC=度. (3)为了使同学们顺利地解答本题(1)中的猜想,小强同学提供了一种探究的思路:在BC上截取BE=BD,连接DE,在此基础上继续推理可使问题得到解决.你可以参考小强的思路,画出图形,在此基础上对(1)中的猜想加以证明.也可以选用其它的方法证明你的猜想.
在平面直角坐标系xOy中,二次函数的图象经过(,0)和(,0)两点. (1)求此二次函数的表达式. (2)直接写出当<x<1时,y的取值范围. (3)将一次函数 y=(1-m)x+2的图象向下平移m个单位后,与二次函数图象交点的横坐标分别是a和b,其中a<2<b,试求m的取值范围.
如图,定义:在Rt△ABC中,∠C =90°,锐角α的邻边与对边的比叫做角α的余切,记作ctanα,即ctanα=. 根据上述角的余切定义,解答下列问题: (1)ctan60°=. (2)求ctan15°的值.
如图, Rt△ABC中,∠ABC=90°,以AB为直径的⊙O交AC于点D,E为BC边的中点,连接DE. (1)求证:DE与⊙O 相切. (2)若tanC=,DE=2,求AD的长.
学生的上学方式是初中生生活自理能力的一种反映.为此,怀柔区某初三数学老师组织本班学生,运用他们所学的统计知识,对初一学生上学的四种方式:骑车、步行、乘车、接送,进行抽样调查,并将调查的结果绘制成图(1)、图(2).请根据图中提供的信息,解答下列问题: (1)抽样调查的样本容量为________,其中步行人数占样本容量的_____%,骑车人数占样本容量的_____%. (2)请将图(1)补充完整. (3)根据抽样调查结果,你估计该校初一年级800名学生中,大约有多少名学生是由家长接送上学的?