有一种可食用的野生菌,刚上市时,外商李经理以每千克30元的市场价格收购了这种野生菌1000千克存放入冷库中,据预测,该野生菌的市场价格将每天每千克上涨1元;但冷冻存放这批野生菌时每天需要支出各种费用合计310元,而且这种野生菌在冷库中最多保存140天,同时,平均每天有3千克的野生菌损坏导致不能出售.(1)若存放天后,将这批野生菌一次性出售,设这批野生菌的销售总额为元,试求出与之间的函数关系式;(2)李经理将这批野生菌存放多少天后一次性全部出售可以获得22500元的利润?
已知:如图,在⊙O中,弦交于点,. 求证:.
如图,抛物线,与轴交于点,且.(1)求抛物线的解析式;(2)探究坐标轴上是否存在点,使得以点为顶点的三角形为直角三角形? 若存在,求出点坐标,若不存在,请说明理由;(3)直线交轴于点,为抛物线顶点.若,的值.
如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(,0)、(0,4),抛物线经过B点,且顶点在直线上.(1)求抛物线对应的函数关系式;(2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N.设点M的横坐标为t,MN的长度为l.求l与t之间的函数关系式,并求l取最大值时,点M的坐标.
如图,直角中,,,,点为边上一动点,∥,交于点,连结.(1)求、的长;(2)设的长为,的面积为.当为何值时,最大,并求出最大值.
在平面直角坐标系xOy中,反比例函数的图象与抛物线 交于点A(3, n). 求n的值及抛物线的解析式; 过点A作直线BC,交x轴于点B,交反比例函数()的图象于点C,且AC=2AB,求B、C两点的坐标;在(2)的条件下,若点P是抛物线对称轴上的一点,且点P到x轴和直线BC的距离相等,求点P的坐标.