(本题8分)如图,△ABC中,∠A=60°.(1)求作一点P,使得点P到B、C两点的距离相等,并且点P到AB、BC的距离也相等(尺规作图,不写作法,保留作图痕迹);(2)在(1)的条件下,若∠ACP=15°,求∠ABP的度数.
(本题12分)如图甲,在平面直角坐标系中,直线y=x+8分别交x轴、y轴于点A、B,⊙O的半径为2个单位长度.点P为直线y=x+8上的动点,过点P作⊙O的切线PC、PD,切点分别为C、D,且PC⊥PD. (1)试说明四边形OCPD的形状(要有证明过程); (2)求点P的坐标; (3)如图乙,若直线y=x+b将⊙O的圆周分成两段弧长之比为1:3,请直接写出b的值 (4)向右移动⊙O(圆心O始终保持在x轴上),试求出当⊙O与直线y=x+8有交点时圆心O的横坐标m的取值范围。
(本题10分)在长方形ABCD中,AB=5cm,BC=6cm,点P从点A开始沿边AB向终点B以1cm/s的速度移动,与此同时,点Q从点C开始沿边CB向终点B以2cm/s的速度移动,如果P、Q分别从A、C同时出发,当点Q运动到点B时,两点停止运动.设运动时间为t秒. (1)填空:BQ=______________cm,PB=_______________cm(用含t的代数式表示); (2)当t为何值时,PQ的长度等于cm? (3)是否存在t的值,使得五边形APQCD的面积等于27?若存在,请求出此时t的值;若不存在,请说明理由
(本题10分)如图,在以O为圆心的两个同心圆中,AB经过圆心O,且与小圆相交于点A、与大圆相交于点B。小圆的切线AC与大圆相交于点D,且CO平分∠ACB。 (1)试判断BC所在直线与小圆的位置关系,并说明理由; (2)试判断线段AC、AD、BC之间的数量关系,并说明理由; (3)若AB=8㎝,BC=10㎝,求大圆与小圆围成的圆环的面积。(结果保留π)
(本题6分)小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?
(本题6分)已知:如图△ABC中,AC=BC,以BC为直径的⊙O交AB于点D,过点D作DE⊥AC于E,交BC的延长线于点F. 求证:(1)AD=BD; (2)DF是⊙O的切线.