已知:如图,矩形ABCD中,CD=2,AD=3,以C点为圆心,作一个动圆,与线段AD交于点P(P和A、D不重合),过P作⊙C的切线交线段AB于F点. (1)求证:△CDP∽△PAF; (2)设DP=x,AF=y,求y关于x的函数关系式,及自变量x的取值范围; (3)是否存在这样的点P,使△APF沿PF翻折后,点A落在BC上,请说明理由.
某海港某日0时到24时的水深与时间的变化关系如图1所示: ⑴水深何时最小?最小水深为多少? ⑵一艘载货6000吨的货轮计划13:30进港卸货,已知该货轮进出港时的水深必须在8m以上,进出港时间忽略不计,且该货轮卸货量p(千吨)与卸货时间x(小时)之间的函数关系如图2所示,该船能在当天离港吗?为什么?
已知,一次函数和的图像交于点A(-1,m) ⑴求出m,b的值; ⑵求出这两条直线与x轴围成的图形的面积。
如图,AC是菱形ABCD的对角线,点E、F分别在边AB、AD上,且AE=AF.试说明△ACE≌△ACF.
在Rt△中,,为上一点,AC=5,AB=13,BD =8, 求线段AD的长度。
已知一个正数的平方根是a-3与2a-9,求这个正数的值。