已知△ABC中,∠C=90°,AB=10,AC=6,点O是AB的中点,将一块直角三角板的直角顶点与点O重合并将三角板绕点O旋转,图中的M、N分别为直角三角板的直角边与边AC、BC的交点.(1)如图①,当点M与点A重合时,求BN的长.(2)当三角板旋转到如图②所示的位置时,即点M在AC上(不与A、C重合),①猜想图②中、、、之间满足的数量关系式,并说明理由.②若在三角板旋转的过程中满足CM=CN,请你直接写出此时BN的长.
如图,△中,是它的角平分线,,在边上,以为直径的半圆经过点,交于点。(1)求证:是的切线;(2)若,连接,求证:∥;(3)在(2)的条件下,若,求图中阴影部分的面积。
如图,在边长为1个单位长度的小正方形组成的网格中,的顶点A、B、C在小正方形的顶点上.将向下平移4个单位、再向右平移3个单位得到△,然后将△绕点顺时针旋转90°得到△.(1)在网格中画出△和△;(2)计算点在变换到点的过程中经过的路线长;(3)计算线段在变换到线段的过程中扫过的图形的面积.
如图所示,在梯形中,∥,,为上一点,.(1)求证:;(2)若,试判断四边形的形状,并说明理由.
已知关于的一元二次方程.(1)试说明无论取何值时,这个方程一定有实数根;(2)已知等腰的底边,若两腰、恰好是这个方程的两个根,求的周长.
甲、乙两支仪仗队队员的身高(单位:厘米)如下:甲队:178,177,179,178,177,178,177,179,178,179; 乙队:178,179,176,178,180,178,176,178,177,180; (1)将下表填完整:
(2)甲队队员身高的平均数为 厘米,乙队队员身高的平均数为 厘米;(3)你认为哪支仪仗队身高更为整齐?请从方差的角度说明理由.