(本小题满分14分)已知函数y=f(x),若存在x0,使得f(x0)=x0,则称x0是函数y=f(x)的一个不动点,设二次函数f(x)=ax2+(b+1)x+b-2(Ⅰ)当a=2,b=1时,求函数f(x)的不动点;(Ⅱ)若对于任意实数b,函数f(x)恒有两个不同的不动点,求实数a的取值范围;(Ⅲ)在(Ⅱ)的条件下,若函数y=f(x)的图象上A,B两点的横坐标是函数f(x)的不动点,且直线是线段AB的垂直平分线,求实数b的取值范围.
棱长为1的正方体中,分别为棱的中点. (1)若平面与平面的交线为,与底面的交点为点,试求的长; (2)求点到平面的距离 .
“开门大吉”是某电视台推出的游戏节目.选手面对1~8号8扇大门,依次按响门上的门铃,门铃会播放一段音乐(将一首经典流行歌曲以单音色旋律的方式演绎),选手需正确回答出这首歌的名字,方可获得该扇门对应的家庭梦想基金.在一次场外调查中,发现参赛选手多数分为两个年龄段:20~30;30~40(单位:岁),其猜对歌曲名称与否的人数如图所示. 写出2×2列联表;判断是否有90%的把握认为猜对歌曲名称是否与年龄有关;说明你的理由;(下面的临界值表供参考)
(参考公式:其中) 现计划在这次场外调查中按年龄段用分层抽样的方法选取6名选手,并抽取3名幸运选手,求3名幸运选手中至少有一人在20~30岁之间的概率.
已知正项数列的前项和为,对任意,有. (1)求数列的通项公式; (2)令,设的前项和为,求证:
已知函数 ⑴解不等式; ⑵设函数,若不等式恒成立,求实数的取值范围.
已知曲线,直线(t为参数). (1)写出曲线C的参数方程,直线的普通方程; (2)过曲线C上任意一点P作与夹角为30°的直线,交于点A,求|PA|的最大值与最小值.