(本小题满分14分)已知函数y=f(x),若存在x0,使得f(x0)=x0,则称x0是函数y=f(x)的一个不动点,设二次函数f(x)=ax2+(b+1)x+b-2(Ⅰ)当a=2,b=1时,求函数f(x)的不动点;(Ⅱ)若对于任意实数b,函数f(x)恒有两个不同的不动点,求实数a的取值范围;(Ⅲ)在(Ⅱ)的条件下,若函数y=f(x)的图象上A,B两点的横坐标是函数f(x)的不动点,且直线是线段AB的垂直平分线,求实数b的取值范围.
ABCD是梯形,AB∥CD,且AB=2CD,M、N分别是DC和AB的中点,已知=,=,试用、表示。
O为平面直角坐标系xoy的坐标原点,点A(4,0), B(4,4), C(2,6), 求AC和OB交点P的坐标.
己知A,B,C三点坐标分别为(-1,0),(3,-1),(1,2),并且. (1)求点E,F的坐标 (2)求证: ∥
((本小题满分10分) 选修4—5:不等式选讲设函数 (1)求不等式的解集; (2)若不等式(,,)恒成立,求实数的范围.
((本小题满分10分) 选修4—4:坐标系与参数方程 已知直线的参数方程为(为参数),曲线C的极坐标方程是,以极点为原点,极轴为轴正方向建立直角坐标系,点,直线与曲线C交于A、B两点. (1)写出直线的极坐标方程与曲线C的普通方程; (2) 线段MA,MB长度分别记为|MA|,|MB|,求的值.