(本小题满分14分)某民营企业生产甲、乙两种产品,根据市场调查与预测,甲产品的利润与投资成正比,其关系如图①;乙产品的利润与投资的算术平方根成正比,其关系如图②.(1)分别将、两产品的利润表示为投资量的函数关系式;(2)该公司已有10万元资金,并全部投入、两种产品中,问:怎样分配这10万元投资,才能使公司获得最大利润?其最大利润为多少万元?
已知数列的首项,,. (1)求的通项公式; (2)证明:对任意的,,; (3)证明:.
如图,设抛物线方程为直线上任意一点,过M引抛物线的切线,切点分别为A,B。 (1)求证:A,M,B三点的横坐标成等差数列; (2)已知当M点的坐标为时,,求此时抛物线的方程; (3)是否存在点M,使得点C关于直线AB的对称点D在抛物线上,其中,点C满足(O为坐标原点).若存在,求出所有适合题意的点M的坐标;若不存在,请说明理由.
已知函数。(1)求函数的单调区间和值域; (2)设,函数,若对于任意总存在,使得成立,求实数的取值范围。
如图,等边与直角梯形ABDE所在平面垂直,,AE⊥AB,,O为AB的中点.
在一次抗洪抢险中准备用射击的方法引爆从上游漂流而下的一个巨大汽油罐。已知只有5发子弹,第一次命中只能使汽油流出,第二次命中才能引爆。每次射击是相互独立的,且命中的概率都是。 (1)求油罐被引爆的概率; (2)如果引爆或子弹打光停止射击,设射击次数为,求的分布列及数学期望。