(本小题满分12分)设函数.(1)当时,求函数的最大值;(2)令其图象上任意一点处切线的斜率,恒成立,求实数的取值范围;(3)当,,方程有唯一实数解,求正数的值.
设不等式|x-2|<a(a∈N*)的解集为A,且∈A,∉A. (1)求a的值; (2)求函数f(x)=|x+a|+|x-2|的最小值.
已知a≥b>0,求证:2a3-b3≥2ab2-a2b.
已知四棱锥P-ABCD的正视图是一个底边长为4,腰长为3的等腰三角形,如图分别是四棱锥P-ABCD的侧视图和俯视图. (1)求证:AD⊥PC; (2)求四棱锥P-ABCD的侧面PAB的面积.
设角A,B,C为△ABC的三个内角. (1)设f(A)=sin A+2sin ,当A取A0时,f(A)取极大值f(A0),试求A0和f(A0)的值; (2)当A取A0时,·=-1,求BC边长的最小值.
如图,在几何体ABCDE中,AB=AD=2,AB⊥AD,AE⊥平面ABD,M为线段BD的中点,MC∥AE,且AE=MC=. (1)求证:平面BCD⊥平面CDE; (2)若N为线段DE的中点,求证:平面AMN∥平面BEC.