(本小题满分14分)已知,函数,. (Ⅰ)求函数的单调区间;(Ⅱ)求证:对于任意的,都有.
某居民小区有两个相互独立的安全防范系统(简称系统)A和B,系统A和B在任意时刻发生故障的概率分别为和p.(1)若在任意时刻至少有一个系统不发生故障的概率为,求p的值;(2)设系统A在3次相互独立的检测中不发生故障的次数为随机变量ξ,求ξ的概率分布列及数学期望Eξ.
一投掷飞碟的游戏中,飞碟投入红袋记2分,投入蓝袋记1分,未投入袋记0分.经过多次试验,某人投掷100个飞碟有50个入红袋,25个入蓝袋,其余不能入袋.(1)求该人在4次投掷中恰有三次投入红袋的概率;(2)求该人两次投掷后得分ξ的数学期望Eξ.
无锡学校文娱队的每位队员唱歌、跳舞至少会一项,已知会唱歌的有2人,会跳舞的有5人,现从中选2人.设ξ为选出的人中既会唱歌又会跳舞的人数,且P(ξ>0)=(1)求文娱队的队员人数;(2)写出ξ的概率分布列并计算E(ξ).
如图,四棱柱ABCD-A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.(1)证明B1C1⊥CE;(2)求二面角B1-CE-C1的正弦值;(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.
在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,且PA⊥平面ABCD. (1)求证:PC⊥BD;(2)过直线BD且垂直于直线PC的平面交PC于点E,且三棱锥E-BCD的体积取到最大值.①求此时四棱锥E-ABCD的高;②求二面角A-DE-B的正弦值的大小.