如图1,已知抛物线y=-x2+bx+c经过点A(1,0),B(-3,0)两点,且与y轴交于点C.(1)求b,c的值。(2)在第二象限的抛物线上,是否存在一点P,使得△PBC的面积最大?求出点P的坐标及△PBC的面积最大值.若不存在,请说明理由. (3)如图2,点E为线段BC上一个动点(不与B,C重合),经过B、E、O三点的圆与过点B且垂直于BC的直线交于点F,当△OEF面积取得最小值时,求点E坐标.
列方程解应用题: 把一些苹果分给若干名学生,如果每人分10个,则剩余6个苹果;如果每人分12个苹果,则还少6个苹果.求共有多少学生?有多少个苹果?
先化简,再求值:, 其中是2的倒数,是3的相反数.
解方程: (1) (2)
计算题: ① ②
正方形ABCD内部有若干个点,用这些点以及正方形ABCD的顶点A、B、C、D把原正方形分割成一些三角形(互相不重叠): (1)填写下表:
(2)原正方形能否被分割成2004个三角形?若能,求此时正方形ABCD内部有多少个点?若不能,请说明理由。