在Rt△ABC中,∠CAB=90°,AB=AC.(1)如图①,过点A在△ABC外作直线MN,BM⊥MN于M,CN⊥MN于N.①判断线段MN、BM、CN之间有何数量关系,并证明;②若AM=,BM=,AB=,试利用图①验证勾股定理=;(2)如图②,过点A在△ABC内作直线MN,BM⊥MN于M,CN⊥MN于N,判断线段MN、BM、CN之间有何数量关系?(直接写出答案)
如图,△ABC是等边三角形,P为BC上一动点(不与B、C重合),以AP为边作等边△APE,连接CE.(1)求证:AB∥CE;(2)是否存在点P,使得AE⊥CE?若存在,指出点P的位置并证明你的结论;若不存,请说明理由.
如图,在Rt△ABC中,AB=AC,∠BAC=90°,BD平分∠ABC交AC于点D,CE⊥BD交BD的延长线于点E,则线段BD和CE具有什么数量关系,并证明你的结论.
某校学生会准备调查2014-2015学年八年级学生参加“武术类”、“书画类”、“棋牌类”、“器乐类”四类校本课程的人数.(1)确定调查方式时,甲同学说:“我到2014-2015学年八年级(1)班去调查全体同学”;乙同学说:“放学时我倒校门口随机调查部分同学”;丙同学说:“我到2014-2015学年八年级每个班随机调查一定数量的同学”.则调查方式最合理的是 同学.(2)他们采用了最合理的调查方法收集数据,并绘制了下表和扇形统计图.
请你根据图表中提供的信息解答下列问题:①求a、b的值;②在扇形统计图中,求“器乐类”所对应扇形的圆心角的度数.
一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状为如图所示的某工厂,厂门上部为半圆形,下部为长方形,已知长方形的宽为2米,高为2.3米,半圆形的直径与门的宽相等.问这辆卡车能否通过该工厂的厂门?
如图,BD⊥AC,CE⊥AB,垂足分别为点D和点E,BD与CE相交于点F,BF=CF.求证:点F在∠BAC的平分线上.