如图,已知BE⊥AD,CF⊥AD,且BE=CF,请你判断AD是ΔABC的中线还是角平分线?请说明你的理由.
问题提出:
(1)如图1,已知,试确定一点,使得以,,,为顶点的四边形为平行四边形,请画出这个平行四边形;
问题探究:
(2)如图2,在矩形中,,,若要在该矩形中作出一个面积最大的,且使,求满足条件的点到点的距离;
问题解决:
(3)如图3,有一座塔,按规定,要以塔为对称中心,建一个面积尽可能大的形状为平行四边形的景区.根据实际情况,要求顶点是定点,点到塔的距离为50米,,那么,是否可以建一个满足要求的面积最大的平行四边形景区?若可以,求出满足要求的平行四边形的最大面积;若不可以,请说明理由.(塔的占地面积忽略不计)
在平面直角坐标系中,已知抛物线经过点和点,关于原点对称的抛物线为.
(1)求抛物线的表达式;
(2)点在抛物线上,且位于第一象限,过点作轴,垂足为.若与相似,求符合条件的点的坐标.
如图,是的直径,是的一条弦,是的切线.作并与交于点,延长交于点,交于点,连接.
(1)求证:;
(2)若的半径,,求的长.
现有、两个不透明袋子,分别装有3个除颜色外完全相同的小球.其中,袋装有2个白球,1个红球;袋装有2个红球,1个白球.
(1)将袋摇匀,然后从袋中随机取出一个小球,求摸出小球是白色的概率;
(2)小华和小林商定了一个游戏规则:从摇匀后的,两袋中随机摸出一个小球,摸出的这两个小球,若颜色相同,则小林获胜;若颜色不同,则小华获胜.请用列表法或画出树状图的方法说明这个游戏规则对双方是否公平.
根据记录,从地面向上以内,每升高,气温降低;又知在距离地面以上高空,气温几乎不变.若地面气温为,设距地面的高度为处的气温为
(1)写出距地面的高度在以内的与之间的函数表达式;
(2)上周日,小敏在乘飞机从上海飞回西安途中,某一时刻,她从机舱内屏幕显示的相关数据得知,飞机外气温为时,飞机距离地面的高度为,求当时这架飞机下方地面的气温;小敏想,假如飞机当时在距离地面的高空,飞机外的气温是多少度呢?请求出假如当时飞机距离地面时,飞机外的气温.