在△ABC中,AB=AC,点E,F分别在AB,AC上,AE=AF,BF与CE相交于点P,(1)求证:△ABF≌△ACE,(2)求证:PB=PC.
如图,台风中心位于点P,并沿东北方向PQ移动,已知台风移动的速度为30千米/时,受影响区域的半径为200千米,B市位于点P的北偏东75°方向上,距离点P 320千米处. (1) 说明本次台风会影响B市;(2)求这次台风影响B市的时间.
化简:÷().
计算:-(3.14-)0+(1-cos30°)×()-2
如图所示,已知在直角梯形中,轴于点.动点从点出发,沿轴正方向以每秒1个单位长度的速度移动.过点作垂直于直线,垂足为.设点移动的时间为秒(),与直角梯形重叠部分的面积为.(1)求经过三点的抛物线解析式;(2)求与的函数关系式;(3)将绕着点顺时针旋转,是否存在,使得的顶点或在抛物线上?若存在,直接写出的值;若不存在,请说明理由.
某电脑公司现有A,B,C三种型号的电脑和D,E两种型号的打印机.某校要从其中选购一台电脑和一台打印机送给山区小学.(1) 写出所有选购方案(利用树状图或列表方法表示);(2) 已知A、D是甲厂生产的产品,B、C、E是乙厂生产的产品.如果(1)中各种选购方案被选中的可能性相同,那么选中全套甲厂生产的产品的概率是多少?