(本小题满分12分)在等差数列{an}和等比数列{bn}中,a1=b1=1,b4=8,{an}的前10项和S10=55.(1)求an和bn;(2)现分别从{an}和{bn}的前3项中各随机抽取一项,写出相应的基本事件,并求这两项的值相等的概率.
动圆M过定点A(-,0),且与定圆A´:(x-)2+y2=12相切. (1)求动圆圆心M的轨迹C的方程; (2)过点P(0,2)的直线l与轨迹C交于不同的两点E、F,求的取值范围.
已知圆,直线.(Ⅰ)若与相切,求的值;(Ⅱ)是否存在值,使得与相交于两点,且(其中为坐标原点),若存在,求出,若不存在,请说明理由.
数列的前项和记为(Ⅰ)求的通项公式;(Ⅱ)等差数列的各项为正,其前项和为,且,又成等比数列,求
已知等差数列满足:,,的前n项和为.(Ⅰ)求及;(Ⅱ)令bn=(nN*),求数列的前n项和.
(本小题满分10分)选修4-5:不等式选修在,的前提下,求a的一个值,是它成为的一个充分但不必要条件。