已知,如图,在中,AE⊥BC,垂足为E,点F为CE上的一点,点G为CD上的一点,CF=CG,连接DF、EG、AG, AG=EG,∠1=∠2.(1)若CE=4,AE=3,求BE的长;(2)求证:∠CEG=∠AGE.
初二(1)班的大课间活动丰富多彩,小文与小月进行跳绳比赛.在相同时间内,小文跳了180个,小月跳了210个,已知小月每分钟比小文多跳20个,问小月、小文每分钟各跳多少个?
如图22,在12×12的正方形网格中,△TAB 的顶点坐标T(1,1)、A(2,3)、B(4,2).以点T(1,1)为位似中心,按比例尺(TA′∶TA)3∶1,并在位似中心的同侧,将△TAB放大为△TA′B′,放大后点A、B的对应点分别为A′、B′.画出△TA′B′,并写出点A′、B′的坐标;在(1)中,若C(a,b)为线段AB上任意一点,写出变化后C的对应点C′的坐标.
解不等式组,并把解集在数轴上表示.
先化简,再求值 其